I. Résultats usuels de trigonométrie
II. Inversion des fonctions circulaires
III. Fonctions hyperboliques
q °
rad 0°
0 30°
p/6 45°
p/4 60°
p/3 90°
p/2 sin 0 1 cos 1 0 tan 0 1 non
défini
cos(x) =
sin(x) =
1 = sin²(q) + cos²(q)
sin(-q) = -sin(q) sin(q + p) = -sin(q) sin(p - q) = sin(q)
cos(-q) = cos(q) cos(q + p) = -cos(q) cos(p - q) = -cos(q)
tan(-q) = -tan(q) tan(q + p) = tan(q) tan(p - q) = -tan(q)
sin(
) = cos(q) sin(
) = cos(q)
cos(
) = -sin(q) cos(
) = sin(q)
- Additioncos(A + B) = cos(A).cos(B) - sin(A).sin(B)- Formules appliquées à l'angle doublecos(A - B) = cos(A).cos(B) + sin(A).sin(B)
sin(A + B) = sin(A).cos(B) + sin(B).cos(A)
sin(A - B) = sin(A).cos(B) - sin(B).cos(A)
tan(A + B) =
tan(A - B) =
![]()
sin(2.q) = 2.sin(q).cos(q)- Transformation d'une somme en produitcos(2.q) = cos²(q) - sin²(q) = 2.cos²(q) - 1 = 1 - 2.sin²(q)
tan(2.q) =
![]()
cos(p) + cos(q) = 2.cos(- Transformation d'un produit en somme).cos(
)
cos(p) - cos(q) = -2.sin(
).sin(
)
sin(p) + sin(q) = 2.sin(
).cos(
)
sin(p) - sin(q) = 2.cos(
).sin(
)
cos(p).cos(q) =.[cos(p-q) + cos(p+q)]
sin(p).sin(q) =
.[cos(p-q) - cos(p+q)]
sin(p).cos(q) =
.[sin(p+q) + sin(p-q)]
x R, p
= Arccos(-x) + Arccos(x)
x [-1,1] , sin(Arccos(x)) =
(Arccos)'(x) =
x [-1,1], cos(Arcsin(x)) =
= Arccos(x) + Arcsin(x)
(Arcsin)'(x) =
x 0, Arctan(x) + Arctan() = (signe(x)).
cos(Arctan(x)) =
sin(Arctan(x)) =
(Arctan)'(x) =
- Généralités
ch(x) =- Additionsh(x) =
th(x) =
ch(-x) = ch(x) sh(-x) = -sh(x)
ch(x) + sh(x) = ex ch(x) - sh(x) = e-x
ch²(x) - sh²(x) = 1 1 - th²(x) =
![]()
(ch)'(x) = sh(x) (sh)'(x) = ch(x)
ch(A + B) = ch(A).ch(B) + sh(A).sh(B)ch(A - B) = ch(A).ch(B) - sh(A).sh(B)
sh(A + B) = sh(A).ch(B) + sh(B).ch(A)
sh(A - B) = sh(A).ch(B) - sh(B).ch(A)
th(A + B) =
th(A - B) =
![]()
- Argch
Argch(x) = Ln(x +- Argsh)
(Argch)'(x) =
Argsh(x) = Ln(x +- Argth)
(Argsh)'(x) =
Argth(x) =
(Argth)'(x) =